
White Paper

Table of Contents
Executive Summary 2

Business Drivers for High Performance Real-Time Analytics 2

Analytical Capabilities of Redis 3

Redis Capabilities Applied to Transactional and Analytical Scenarios 5

Personalization/Recommendations 5

Machine Learning For Predictions 6

Fraud Detection 7

Interactive Reporting 8

How to Manage Terabytes of Data in Redis 8

Scaling Redis 8

Optimizing Costs 9

Conclusion 10

Redis for Real-Time Analytics

2

White Paper

Executive Summary
Next generation applications need to embed analytics inline in order to generate intelligent and

delightful customer experiences. Given the performance needs of interactive applications, this calls

for high performance databases that are capable of handling a variety of application scenarios at

the lowest complexity and costs, with uncompromising performance. Redis is such a database and

a large chunk of Redise users use it for real-time analytics. This whitepaper describes its analytic

capabilities, fit for a variety of real-time scenarios along with a guide to handling vast amounts of

data in Redis.

Business Drivers for High Performance
Real-time Analytics
Next generation applications, at the cutting edge of user interaction, often tell the user, “We

noticed you liked X. We think you will like Y.” Or when the user is presented with choices on his next

step or next purchase, they get a message “Many of our users seem happiest if they choose C with

A. We thought you should know.” Or sometimes, “You just booked Q – some reviews of R are here,

you may want to check out R afterwards.”

These types of savvy applications are presenting users with offers in CONTEXT of their other

actions/decisions, when they are still warm, and ready to enhance their experience. Such offers are

often much more powerful than those made through a cold email or a cold phone call several days

later. This additional intelligence in applications also makes for a delightful user experience, a user

who just booked tickets to a show at “The Second City in Chicago”, might want to make a dinner

reservation prior to the show and would be delighted to see discount offers or deals businesses

close by. Lastly, this type of intelligence makes a ton of business sense, because competing

businesses could easily grab loyal customers, were they to offer a better experience.

A measure of “smartness” of applications could also include detecting odd or unusual behavior

that marks different types of fraud from gaming fraud, to identity fraud or abuse of promotions.

This scenario is even more intense. To be effective, analytic processing of current behavior and

detection of such fraud needs to complete before the user concludes their fraudulent activity.

These types of applications could be using data from several different sources and comparing with

current user behavior, to detect and prevent misuse.

With the increasing availability of cheap compute capacity, data processing tools and learning

frameworks, it is becoming increasingly achievable to incorporate “intelligence” into applications.

However, it is crucial to add this intelligence in without disrupting performance or responsiveness

of applications. Customer facing applications in particular have to respond to users in under

100ms, to meet user experience expectations. With Internet latencies often at up to 50ms round

trip, application processing, data access and responses have to be generated in 50ms. To achieve

this at scale, the database used must be capable of delivering sub-millisecond response times

under conditions of any load. Add in the need to achieve intelligence, and this means that your

analytic operations on live data need to be accomplished at the same speeds and often as the same

operation. In other words, in-database analytics become critical to meeting performance and

functionality requirements.

3

White Paper

Analytical Capabilities of Redis
Redis is an in-memory database platform most well-known for its high performance, extreme versatility

with data structures and modular extensibility to any data processing, analysis or storage use case.

When it comes to performance, Redis has been benchmarked to handle >1M operations/second

at sub-millisecond latencies, with a single modest AWS instance. When it comes to end to end

application throughput and latencies, Redis handily outperforms all other NoSQL databases in the

market with the fewest resources.

But when it comes to analytics, the true performance boost is provided by its data structures which

include Sets, Sorted Sets, Hashes, Lists, Strings, Bitmap and Hyperloglog. The data structures

provide not just mechanisms to store variably structured data, they come with built-in operations

that perform complex in-database analytics on the data, right in memory, where it is stored. This

approach eliminates network and computing overhead while also radically simplifying application

development complexity.

As an example, take the Sorted Set structure with Redis.

Sorted Sets order their members by a score. Retrieving members by score ranges is trivial with

Sorted Set operations and make them a natural fit for time-series data, real-time bid management,

purchases by order amounts, most viewed articles, top scores etc. Sorted Sets are built in Redis

with mechanisms that provide high performance sorting, operations like ranking, range operations,

counts in a range and also set operations like generating intersections, unions, are executed with

the maximum possible efficiency and simplicity. Using Sorted Sets for analyses like time-series data

analysis is usually an order of magnitude or two faster using Redis than with any other regular key/

value store or with disk based databases.

App ServersCloudMobile Database

Required DB
response �me

1msec

Required roundtrip app response �me
(includes processing & mul�-DB access)

50msec

Average roundtrip internet latency

The new standard for E2E applica�on response �me, under any load

50msec

100msec

Figure 1. End-to-end application response time requirements

4

White Paper

Similar analytical operations come built into other data structures. Geo data structures include

commands that analyze geospatial data and calculates distances, members within a particular

distance from each other and more. Hyperloglog returns probabilistic cardinality estimates without

having to store the actual items being added to a set – thereby maximizing memory space efficiency

when there are millions of items.

These analytical operations exist side by side with data processing structures like Lists, Hashes,

Sets, functionality like Publish/Subscribe and commands like key expiration, increment/decrement

by values, pushing and popping from lists and many more, allowing developers to use different data

structures like LEGO building blocks within their application.

Redis also supports an embedded scripting language, Lua, that extends the range of complex

analytics you can execute on your data, with its simple syntax, convenient data constructs and

capable base libraries.

Key A

Score=300Member R

Score=500Member X

Score=1000Member P

Figure 2. Sorted Set representation

Geospatial Indexes

Sorted Sets

Sets

Lists

Hashes

Bit Field

Bitmaps

Strings

Hyperlog-logs

“I’m a plain Text String!”

0011010101011001110010101010

{23334}{112345569}{766538}{665455}

{A: “foo”, B: “bar”, C: “baz”}

{A:0.1, B:0.3, C:100, D:1337}

{A:(51.5, 0.12), B:(32.1, 34.7)}

00110101 11001110 10101010

{A,B,C,D,E}

[ABCDE]Key A

Figure 3. Redis data structures are like building blocks

5

White Paper

Redis Modules further extend Redis capabilities when it comes to analytics. Recent modules include:

neural-redis: a simple feed forward neural network as a
native data type in Redis

redis-ml: extends Redis to be a serving layer for machine
learning models

redisearch: allows Redis to be used for full text indexing
and search

rediJSON: JSON engine for Redis

Redis secondary index: allows creating and querying
secondary indexes in Redis.

Redis graph: Redis module that implements a graph database.

topk: tracks the k most frequent elements in a stream

countminsketch: counts items approximately with the
least memory usage

redablooms: implements scalable counting bloom filters

Redis Capabilities Applied to Transactional and Analytical Scenarios

Given the high performance and scale enabled by Redis’ analytical capabilities, smart applications

have already started incorporating some of these as underpinnings to their key functionality.

Personalization/Recommendations
Personalization typically incorporates two dimensions:

• A user profile which could be comprised of their history, location, demographic, stated preferences

• Business rules related to offers being made to the user such as conversion targets, segmentation of

offers, relevant behavioral context, reference sales

As a user interacts with the application, Redis is often used as a transactional store, providing high

speed updates to user profiles while capturing the user’s ongoing behavior. Concurrently it is also

used to generate analytics such as counts, scoring, ranking etc that trigger the presentation of the

The Traditional Way

Analytics Database

Operational Database

Analytics

Applications

Transactional data

Batch

Batch

Batch

Analytics at Real-Time Speeds

Applications

Transactions

Built-in Analytics

Built-in Structures and Modules

Geospatial IndexesSorted Sets

SetsListsHashes

Bit FieldBitmapsStrings

Hyperlog-logs

Time
series

JSON

Search

ML

GEO

Graph

RQL

Figure 4. Redis Modules extend Redis infinitely

Figure 5. Modern day transactional and analytical scenarios

6

White Paper

right offer. Additionally, its data structures like Sorted Sets can be used to process similarity scores at

blazing fast speeds, compute and serve up the right recommendations with sub-millisecond latencies.

The Redis advantage in this scenario is that it can simultaneously update and analyze data in

memory at blazing fast speeds, so “intelligence” is not a trade off with “performance”.

A sample implementation of a Redis-based recommendations engine using Sorted Sets can be found

on github: https://github.com/RedisLabs/redis-recommend.

Machine Learning For Predictions
When the ability to detect segments within users or similarities/dissimilarities in behavior requires

complex algorithms that extract correlations on the fly, machine learning is commonly used to

tease out connections. Open source frameworks like Apache Spark, Tensorflow, Torch, etc. are

typically employed to run machine learning on large datasets to glean predictive algorithms. To

date, incorporating machine learning based models has been a mostly offline or batch exercise.

Frameworks like Apache Spark process large chunks of loosely related data to automatically detect

patterns and generate models that serve as algorithmic methods to implement “intelligence”.

These models are stored on disk and updated as a batch process. Often, they can only be retrieved,

updated or executed from applications that are written in the same language because databases

that store these models in their native format don’t exist. But more importantly, complex models

cannot be served fast enough at scale by standard ML platforms. If a simplified model is used,

the results are typically not accurate enough. And complex models are usually too large to be

accommodated at the application layer. Serving these fast enough with homegrown methods in

under 50 msec requires too many servers.

Redis-ML, the machine learning module from Redis Labs allows storage of machine learning models

such as decision trees generated by random forest algorithms, in native format, in-memory. This

allows these models to be stored, retrieved, executed and updated in memory at the scale and

speed required for inline processing, with very few resources. Redis-ML is, like Redis, written in C,

and delivers ML serving with the least overhead and resource usage. It inherits the high availability

and scale of Redise, and executes complex operations like replacing a decision tree in a random

forest with simplicity and high performance. Added advantages include the ability to handle

multiple different types of machine learning models such as Random forest, Logistic Regression,

Gradient Boosted Trees and allows their simultaneous use by applications written in different

programming languages.

For machine learning scenarios that do not require processing of visual data, and require simple

feed forward neural networks, Neural-Redis, an open source Redis module enables implementation

of such neural networks in memory.

The advantages of such built-in machine learning capabilities are enormous. As predictive

intelligence gets implemented in production, the accuracy of machine learning models and the

capability to keep them up to date makes the difference between disgust and delight. With the

powerful performance of Redis and its ability to natively serve and update machine learning

models, applications can handle hundreds and thousands of instantaneous decisions rapidly, and

with accuracy.

7

White Paper

Fraud Detection
Fraud detection often relies on statistical techniques or artificial intelligence mechanisms, as well

as human intervention, while combing through vast volumes of data and transactions. Redis usage

in fraud detection scenarios is most often fueled by its capability to handle immense volumes of

data at very low latencies.

(1) Training (2) Creating a model (3) Serving the model

Redis enterprise + Redis-ML

Identity

Fraud

Anomalous

Transactions

Gaming Fraud Spam Filters Anomalous

Behavior

Streaming/
Fast Data

Ingest
In-database
Analytics

Time
series

JSON/Geo/
Graph

Job &
Queue

Machine
Learning

Messaging/
Notifications

Functions Critical for Effective Real-time Fraud Detection

Figure 7. Redise capabilities make it the most efficient database for implementing fraud detection

Fraud detection systems typically need to consume tens of millions of data points and are often

inline to many customer transactions to be most effective. Redis’ high performance coupled with

Figure 6. Typical machine learning lifecycle

8

White Paper

its ability to handle streaming data through pub/sub functionality and data structures such as lists

make it the best choice for fast data ingest.

Built in analytics such as set cardinality and Hyperloglog based counters make it an efficient way

to implement fraud estimation functionality. Native data structures such as Geo and Sorted Sets as

well as modules that handle JSON, Graph and other data help accelerate analysis based on location,

time, relationships, and other parameters.

Redis’ ability to handle high speed transactions (reads consistent with writes) as well as the use of

its List data structure for job & queue management and its Hash data structure for lightning fast

updates to user session data, make it a versatile choice for powering in-line fraud detection, where

application latencies need to be in the 100ms range, requiring data access and processing to need

the sub-millisecond response times of Redis. Built-in job & queue and messaging functionality help

trigger alerts or notifications when fraudulent transactions are detected.

Machine learning (as noted in the above section) can be implemented simultaneously – giving Redis

an enormous advantage over other databases where numerous functions need to be implemented

either at the application level or a variety of specialty databases need to be deployed to handle

separate needs of the application.

Interactive Reporting
When users are creating meaningful reports over millions of data points interactively, response time

expectations for data pulls are in the <10ms range and pagination times are expected to be in <3ms.

Most large data repositories are unable to handle such low latency requirements, and often use Redis

as an intermediary data store. Redis Sorted Sets, with their optimized pre-sorting are capable of

meeting extremely low latency requirements even with millions of records to report from.

Redis is often used in front of RDBMS as well as large disk based NoSQL repositories like HBase,

Cassandra etc to provide the high throughput and low latency needed by users.

How to Manage Terabytes of Data in Redis
Redis runs in memory, and two questions usually come up in relation to large volumes of data. The

first is about how to scale Redis and the second about how manage enormous volumes of data with

high performance but low costs.

Scaling Redis with High Availability
Redis is single threaded and can use only one processing core at a time. It can be scaled in memory

by creating additional instances or shards. Redis can be used in persistent mode as a full-fledged

database, with additional availability options of in-memory replication across racks/zones/

datacenters/regions and even clouds.

“Using Redise Pack in our fraud detection service was an excellent decision for our organization. It is
enabling us to easily manage billions of transactions per day, keep pace with our exponential growth
rate, and speed fraud detection for all of our clients.” - Ravi Sandepudi Head of Engineering, Simility.

9

White Paper

With Redis Labs’ downloadable software Redise Pack, you can create a shared pool of memory

across group of servers in an automated fashion, so that your Redis datasets can grow seamlessly

beyond the largest memory available on a single server. Redis Labs also provides Redise Cloud,

which runs on all the different IaaS public clouds including AWS, Azure, GCP, IBM Softlayer as well

as PaaS clouds like Heroku, OpenShift, CloudFoundry. You interact with Redis as if it is a single

instance, while Redis Labs takes care of the provisioning, scaling, sharding, re-sharding and re-

balancing operations.

Management Path

Data Path

Figure 8. Shared nothing dynamic cluster architecture of Redise Pack

Built into Redise is a full high availability suite including persistence, in-memory diskless replication

across racks, zones, datacenters, regions and even clouds. Redis instances are continuously

monitored, triggering failover within instants, avoiding the possibility of data loss. Redis Labs’ has

been benchmarked to provide the most robust high availability for Redis deployments.

Redise includes a distributed cut-through Proxy, a shared nothing cluster architecture, with

watchdogs at the node and cluster level that are constantly monitoring and optimizing Redis

deployments. Numerous performance optimizations ensure a stable, predictable performance

benchmarked as the fastest.

Optimizing Costs while delivering High Performance
Generational shifts in Flash memory have extended performance without a corresponding shift

in price. Redise Flash takes advantage of this high performance alternative to offer near RAM

like performance with up to 70% lower costs. Flash is treated as an extension of RAM (and not

used for persistent storage). Asynchronous and multi-threaded access to Flash assures optimal

performance. But the real performance benefit is achieved by taking a tiered approach to data –

keys and hot values are stored in RAM and cold values are stored in Flash memory. This enables

sub-millisecond latencies, even with extremely high throughput using a combination of Flash and

RAM. Recent benchmarks demonstrate Redis on Flash performance of up to 3M ops/second, with

<1 ms latency using a combination of RAM and Flash ratio of 10:90.

Analytical scenarios with Redise Flash include genome data analysis at a prominent university where

Redis accomplished the much needed analysis, at blazing fast performance even with 30TB of raw data.

©2017 Redis Labs, Inc. | 700 E El Camino Real Suite 250, Mountain View, CA 94040 | (415) 930-9666

WP-RedisLabs-RealtimeAnalytics-106

Redis on RAM Redise on Flash

Datset Size 10TB 10TB

Databse size with replication 30TB 20TB*

AWS instance type x1.32xlarge i3.16xlarge

Actual instance size
(RAM, and RAM+Flash)

1.46TB 3.66TB

of instances needed 21 6

Persistent Storage (EBS) 154TB 110TB

1 year cost (reserved instances) $1,595,643 $298,896

Savings - 81.27%

* Redis enterprise only needs 1 copy of the data because quorum issues are solved at the node level

Figure 9. A cost comparison of Redise on Flash vs Redis on RAM, using AWS instances

Conclusion
As the world moves towards analytics at the speed of business, enabling technologies such as Redis are

being increasingly adopted to increase the effectiveness of “intelligence” in applications. Implementing

these analytics while simultaneously handling operational tasks requires the robust high performance

and low latencies of in-memory databases, while delivering simultaneously analytics requires built-in

analytic operations in Redis data structures and versatile data processing capabilities of Redis modules.

Redis capabilities provide both a tremendous boost to performance and a reduction in application

complexity. Redis Modules extend Redis to numerous analytic scenarios while Redise Flash makes it

possible to reduce operational costs by up to 70%. For additional information about how you can deploy

Redis in your analytic scenarios, email expert@redislabs.com.

